
Optimal Path Finding
Unit No 4

Dr. Praveen Barapatre

1

Admissible A*

• In the realm of pathfinding algorithms, A* stands out as a remarkably
efficient and versatile tool.

• Its effectiveness hinges on the quality of the heuristic function it
employs.

• An admissible heuristic is a crucial component that ensures A* finds
the optimal solution.

2

What is an Admissible Heuristic?

• An admissible heuristic, denoted as h(n), is a function that estimates
the cost of reaching the goal node from a given node n.

• It's considered admissible if it never overestimates the actual cost.

• In other words, h(n) must always be less than or equal to the true
cost h*(n).

3

Why Admissibility Matters

• An admissible heuristic guarantees that A* will explore the most
promising nodes first.

• By prioritizing nodes that are closer to the goal and have lower
estimated costs, A* avoids unnecessary exploration of less promising
paths.

• This focused approach significantly reduces the search space and
speeds up the algorithm.

4

Ensuring Admissibility
To ensure admissibility, it's essential to design heuristic functions
carefully. Some common techniques include:

1.Relaxation: This involves simplifying the problem by removing
constraints or obstacles. The resulting relaxed problem can be solved
optimally, and its solution cost can be used as an admissible
heuristic.

2.Pattern Databases: These precomputed tables store optimal solution
costs for specific subproblems. By combining multiple pattern
databases, more accurate and admissible heuristics can be derived.

3.Domain-Specific Knowledge: Leveraging domain-specific knowledge
can lead to highly informative and admissible heuristics. For example,
in a grid-based map, the Euclidean distance or Manhattan distance
between two nodes can serve as admissible heuristics.

5

Iterative Deepening A*

• Iterative Deepening A* (IDA*) is a graph traversal and pathfinding
algorithm that combines the best aspects of iterative deepening
depth-first search (IDDFS) and the A* search algorithm.

• It's particularly useful for problems where memory is a constraint, as
it requires significantly less memory than A* while still guaranteeing
optimal solutions.

6

How IDA Works:*

1. Initial Threshold:
1. Start with an initial threshold, typically the estimated cost to the goal node

from the starting node, calculated using a heuristic function.

2. Depth-Limited Search:
1. Perform a depth-limited search, exploring nodes up to the current

threshold.

2. At each node, calculate the f-value (f(n) = g(n) + h(n)), where g(n) is the cost
to reach the node from the start, and h(n) is the estimated cost to the goal).

3. If a node's f-value exceeds the threshold, prune the branch.

7

How IDA Works:*

3. Iterative Deepening:
1. If no solution is found, increase the threshold to the minimum f-value of

nodes that exceeded the previous threshold.

2. Repeat the depth-limited search with the new threshold.

4. Termination:
1. The algorithm terminates when a solution is found or when the threshold

exceeds a predefined maximum value.

8

Key Advantages of IDA*

• Memory Efficiency: IDA* uses significantly less memory than A* as it
only needs to store the current path from the root to the current
node.

• Completeness: It guarantees to find an optimal solution if one exists,
similar to A*.

• Simplicity: The algorithm is relatively simple to implement and
understand.

9

Key Disadvantage

• Repetitive Node Expansions: IDA* may re-explore nodes multiple
times, which can be inefficient, especially in large search spaces.

10

When to Use IDA*

• When memory is a significant constraint and optimal solutions are
required.

• In problems with large search spaces where A* might run out of
memory.

• When the heuristic function is accurate enough to prune many
branches.

11

Recursive Best First Search

• RBFS is a search algorithm that combines the space-efficiency of
depth-first search with the optimality of best-first search. It's
particularly useful for problems where the search space is large and
memory constraints are a concern.

12

1.F-limit: This is the estimated cost of the best alternative path
available from any ancestor of the current node. It acts as a threshold
for exploration.

2.Backtracking: If a node's F-value exceeds the F-limit, the algorithm
backtracks to the parent node and updates the F-limit to the best
alternative path.

3.Recursive Exploration: The algorithm recursively explores the most
promising child node, updating the F-limit as needed.

13

RBFS(node, F_limit):

 if node is the goal node:

 return node.path_cost # Solution found

 for each child of node:

 child.f = max(child.g + child.h, node.f) # Calculate child's F-value

 # Sort children by increasing F-value

 children.sort(key=lambda child: child.f)

 for child in children:

 if child.f > F_limit:

 return F_limit # No better path beyond this point

 # Recursively explore the best child

 alternative = RBFS(child, min(F_limit, child.f))

 if alternative < F_limit:

 return alternative # Found a better path

 return children[0].f # No better path found

14

How it Works

1.Initialization: The algorithm starts with the initial node and an initial F-
limit (usually infinity).

2.Node Expansion: The algorithm expands the current node, calculating the
F-value for each child node.

3.F-limit Check: The algorithm compares the F-value of each child node with
the current F-limit.

4.Recursive Exploration: If a child node's F-value is less than or equal to the
F-limit, the algorithm recursively explores that child node.

5.Backtracking: If all child nodes have F-values greater than the F-limit, the
algorithm backtracks to the parent node and updates the F-limit to the
best alternative path.

15

Pruning the CLOSED List

In search algorithms like A* and RBFS, the CLOSED list is a data
structure that stores nodes that have already been explored. This list is
crucial for preventing cycles and ensuring that the algorithm doesn't
revisit the same node multiple times.

16

While the CLOSED list is essential for traditional search algorithms,
RBFS's recursive nature and F-limit mechanism can make it less
necessary.

• F-Limit Pruning: The F-limit acts as a dynamic threshold. If a node's F-
value exceeds the current F-limit, it's effectively pruned, regardless of
whether it's in the CLOSED list or not.

• Recursive Structure: RBFS's recursive exploration ensures that only
the most promising paths are explored. This inherent pruning
mechanism reduces the need for a traditional CLOSED list.

17

Pruning the OPEN List

• While RBFS doesn't explicitly maintain an OPEN list in the traditional
sense, it implicitly prunes the search space using the F-limit. This F-
limit acts as a dynamic threshold, ensuring that only nodes with
promising F-values are explored.

18

How RBFS implicitly prunes the OPEN list

1.F-Limit as a Pruning Tool:
1.When a node is expanded, its children are evaluated based on

their F-values.
2.If a child's F-value exceeds the current F-limit, it's immediately

discarded, effectively pruning it from the search space.

2.Recursive Exploration and Backtracking:
1.RBFS recursively explores the most promising child node,

determined by its F-value.
2.If a dead-end is reached or a better path is found, the

algorithm backtracks, pruning the current branch.

19

Conquer Beam Stack Search

Conquer Beam Stack Search (CBSS) is a technique that combines the
efficient exploration of Beam Stack Search (BSS) with the divide-and-
conquer paradigm. This combination aims to further improve the
search efficiency, especially in large-scale problems.

20

How CBSS Works

1.Problem Decomposition:
1.The original problem is divided into smaller, more manageable

subproblems.
2.This decomposition can be based on various criteria, such as spatial or

temporal constraints.

2.Parallel Search:
1.Each subproblem is solved independently using BSS.
2.This parallel exploration can significantly speed up the search process.

3.Subproblem Integration:
1.Once solutions for the subproblems are found, they are combined to

form a solution for the original problem.
2.This integration may involve conflict resolution and optimization

techniques.

21

Key Advantages of CBSS

• Scalability: By breaking down large problems into smaller ones, CBSS
can handle complex scenarios that might be intractable for traditional
search algorithms.

• Parallelism: The parallel nature of the algorithm allows for efficient
utilization of computational resources.

• Flexibility: The decomposition strategy can be tailored to the specific
problem domain, leading to optimal performance.

22

	Slide 1: Optimal Path Finding Unit No 4
	Slide 2: Admissible A*
	Slide 3: What is an Admissible Heuristic?
	Slide 4: Why Admissibility Matters
	Slide 5: Ensuring Admissibility
	Slide 6: Iterative Deepening A*
	Slide 7: How IDA Works:*
	Slide 8: How IDA Works:*
	Slide 9: Key Advantages of IDA*
	Slide 10: Key Disadvantage
	Slide 11: When to Use IDA*
	Slide 12: Recursive Best First Search
	Slide 13
	Slide 14
	Slide 15: How it Works
	Slide 16: Pruning the CLOSED List
	Slide 17
	Slide 18: Pruning the OPEN List
	Slide 19: How RBFS implicitly prunes the OPEN list
	Slide 20: Conquer Beam Stack Search
	Slide 21: How CBSS Works
	Slide 22: Key Advantages of CBSS

