Search Methods

Unit No 2

Dr. Praveen Barapatre

Breadth First search (BFS)

* Breadth-First Search (BFS) is a graph traversal algorithm that explores
all nodes at a given depth before moving to the next level. It's often
used to find the shortest path between two nodes in a graph where
the edges have uniform weights (like a maze or a network).

Algorithm Steps:

Initialization:
1.Mark all nodes as unvisited.
2.Choose a starting node and mark it as visited.
3.Create a queue to store nodes for exploration.
4.Enqueue the starting node.

Algorithm Steps:

Traversal:

1.While the queue is not empty:
1.Dequeue a node from the front of the queue.
2.Process the node (e.g., print its value or check if it's the target).

3.For each unvisited neighbor of the dequeued node:

1.Mark the neighbor as visited.
2.Enqueue the neighbor.

Pseudocode:

function BFS(graph, start):
queue = []
visited = set()
queue.append(start)
visited.add(start)
while queue:
node = queue.pop(0) # Dequeue the front node
Process the node (e.g., print its value or check if it's the target)
for neighbor in graph[node]:
if neighbor not in visited:
visited.add(neighbor)
gueue.append(neighbor)

Applications

* Shortest path in unweighted graphs: BFS finds the path with the
fewest edges between two nodes.

* Connected components: BFS can identify isolated groups within a
graph.

* Level-order traversal of trees: BFS can traverse a tree level by level.

* Page ranking algorithms: BFS is used in some page ranking algorithms
to explore web pages.

Video

https://www.youtube.com/watch?v=0DgjPvD54Ss

Comparison Between BFS and DFS

Feature

Traversal Order
Data Structure
Time Complexity
Space Complexity

BFS DFS

Level-by-level (breadth- |Depth-wise (branch-by-
wise) branch)

Queue Stack

Of V

Of V

Shortest Path (Unweighted Finds the shortest path (in [May not find the shortest

Graphs)

Applications

terms of edges) path

Shortest paths in

unweighted graphs,

connected components,

level-order traversal of Topological sorting, cycle
trees detection, maze solving

Key Differences

* Traversal Order:
* BFS explores nodes level by level, moving from left to right in each level.

* DFS explores nodes depth-wise, going as deep as possible along a path before
backtracking.

* Data Structure:
* BFS uses a queue to store nodes for exploration.
* DFS uses a stack (or recursion) to store nodes for exploration.

* Shortest Path:
* BFSis guaranteed to find the shortest path in unweighted graphs.

* DFS may not find the shortest path, as it can explore a deeper path that may
not be optimal.

When to Use Which

* BFS:

 When you need to find the shortest path in an unweighted graph.
* For level-order traversal of trees.
* To find connected components in a graph.

* DFS:

* When you need to explore all possible paths in a graph.
* For topological sorting or cycle detection.
* For maze solving or game-tree search.

Quality of Solution

Correctness:

* Does the solution accurately address the problem?

* Are there any errors or bugs in the implementation?

* Does it produce the expected output for various inputs?
Efficiency:

* How fast does the solution run?

* Does it use efficient algorithms and data structures?

* Can the performance be improved?

Readability:

* |s the code well-formatted and easy to understand?

* Are variable and function names meaningful?

* Are comments used to explain complex logic?
Maintainability:

* Is the code modular and easy to modify?

e Can changes be made without introducing errors?

* Is the solution scalable to handle future requirements?

Testability:

* |s the solution well-tested with a variety of inputs?
* Are there unit tests and integration tests in place?
Elegance:

* |s the solution concise and elegant?

* Does it avoid unnecessary complexity?

* Is it a pleasure to read and understand?

Depth Bounded DFS

* Depth-Bounded DFS (DBFS) is a variant of Depth-First Search (DFS)
that limits the depth of the search to a specified bound. This can be
useful in situations where the search space is very large and exploring
all possible paths would be computationally expensive or impractical.

e Set a depth limit, which determines the maximum depth that the
search can reach.

* If the search reaches the depth limit, it backtracks to the previous
node and continues the search from there.

Pseudocode:

function DBFS(graph, start, depth_limit):
visited = set()
stack = [(start, 0)] # (node, depth)
while stack:
node, depth = stack.pop()
if depth > depth_limit:
continue # Ignore nodes beyond the depth limit
if node not in visited:
visited.add(node)
Process the node (e.g., print its value or check if it's the target)
for neighbor in graph[node]:
stack.append((neighbor, depth + 1))

Applications

 Game Tree Search: In games like chess or Go, DBFS can be used to
explore the game tree to a certain depth to evaluate possible moves.

* Constraint Satisfaction Problems: DBFS can be used to solve
problems with constraints, such as Sudoku or the N-Queens problem,
by limiting the search to a certain depth.

* Pathfinding: DBFS can be used to find paths in a graph with a limited
number of steps.

Advantages:
* Can be more efficient than DFS for large search spaces.

* Can be used to find solutions within a specified time or resource
constraint.

Disadvantages:

* May not find the optimal solution if the depth limit is too low.
* Can be sensitive to the choice of depth limit.

Depth-First Iterative Deepening (DFID)

* Depth-First Iterative Deepening (DFID) is a search algorithm that
combines the benefits of depth-first search (DFS) and breadth-first
search (BFS). It's particularly useful for problems where the solution
depth is unknown or may vary significantly.

How DFID Works

1.Start with a depth limit of 0.
2.Perform a depth-first search (DFS) up to the current depth limit.

3.If a solution is found, return it.

4.1f no solution is found, increase the depth limit by 1 and repeat
steps 2-3.

* Efficiency: It's more efficient than BFS in terms of space complexity, as
it only needs to store the current path.

* Completeness: It's complete, meaning it will always find a solution if
one exists.

* Time Complexity: Its time complexity is similar to BFS in the worst
case, but it can be more efficient in practice, especially if the solution
depth is relatively small.

» Space Complexity: Its space complexity is O(d), where d is the depth
of the solution.

Advantages of DFID

* Efficient Space Usage: Compared to BFS, DFID requires less memory.
 Completeness: It guarantees to find a solution if one exists.

e Can Handle Varying Solution Depths: It's well-suited for problems
where the solution depth is unknown or can vary.

Disadvantages of DFID

* Re-Explores Nodes: It can re-explore nodes multiple times, which can
be inefficient in some cases.

Applications of DFID

 Game-Playing: DFID is often used in game-playing algorithms, such as
those for chess and Go, to explore the search space efficiently.

* Planning: It can be applied to planning problems where the goal state
is unknown or the path to the goal may vary in length.

* Constraint Satisfaction Problems: DFID can be used to solve
constraint satisfaction problems, such as Sudoku and Minesweeper.

Depth Bounded DFS Video

https://www.youtube.com/watch?v=P7WQUBLKDmo

23

https://www.youtube.com/watch?v=P7WQUBLKDmo

Depth First Iterative Deepening Video

https://www.youtube.com/watch?v=BK8cEWKHCKkY

24

https://www.youtube.com/watch?v=BK8cEWKHCkY

	Slide 1: Search Methods Unit No 2
	Slide 2: Breadth First search (BFS)
	Slide 3: Algorithm Steps:
	Slide 4: Algorithm Steps:
	Slide 5: Pseudocode:
	Slide 6: Applications
	Slide 7: Video
	Slide 8: Comparison Between BFS and DFS
	Slide 9: Key Differences
	Slide 10: When to Use Which
	Slide 11: Quality of Solution
	Slide 12
	Slide 13
	Slide 14: Depth Bounded DFS
	Slide 15: Pseudocode:
	Slide 16: Applications
	Slide 17
	Slide 18: Depth-First Iterative Deepening (DFID)
	Slide 19: How DFID Works
	Slide 20
	Slide 21
	Slide 22: Applications of DFID
	Slide 23: Depth Bounded DFS Video
	Slide 24: Depth First Iterative Deepening Video

