
Search Methods
Unit No 2

Dr. Praveen Barapatre

1

Breadth First search (BFS)

• Breadth-First Search (BFS) is a graph traversal algorithm that explores
all nodes at a given depth before moving to the next level. It's often
used to find the shortest path between two nodes in a graph where
the edges have uniform weights (like a maze or a network).

2

Algorithm Steps:

Initialization:
1.Mark all nodes as unvisited.
2.Choose a starting node and mark it as visited.
3.Create a queue to store nodes for exploration.
4.Enqueue the starting node.

3

Algorithm Steps:

Traversal:
1.While the queue is not empty:

1.Dequeue a node from the front of the queue.

2.Process the node (e.g., print its value or check if it's the target).

3.For each unvisited neighbor of the dequeued node:
1.Mark the neighbor as visited.

2.Enqueue the neighbor.

4

Pseudocode:

function BFS(graph, start):

 queue = []

 visited = set()

 queue.append(start)

 visited.add(start)

 while queue:

 node = queue.pop(0) # Dequeue the front node

 # Process the node (e.g., print its value or check if it's the target)

 for neighbor in graph[node]:

 if neighbor not in visited:

 visited.add(neighbor)

 queue.append(neighbor)

5

Applications

• Shortest path in unweighted graphs: BFS finds the path with the
fewest edges between two nodes.

• Connected components: BFS can identify isolated groups within a
graph.

• Level-order traversal of trees: BFS can traverse a tree level by level.

• Page ranking algorithms: BFS is used in some page ranking algorithms
to explore web pages.

6

Video

https://www.youtube.com/watch?v=oDqjPvD54Ss

7

Comparison Between BFS and DFS

Feature BFS DFS

Traversal Order
Level-by-level (breadth-
wise)

Depth-wise (branch-by-
branch)

Data Structure Queue Stack

Time Complexity O(V

Space Complexity O(V

Shortest Path (Unweighted
Graphs)

Finds the shortest path (in
terms of edges)

May not find the shortest
path

Applications

Shortest paths in
unweighted graphs,
connected components,
level-order traversal of
trees

Topological sorting, cycle
detection, maze solving

8

Key Differences

• Traversal Order:
• BFS explores nodes level by level, moving from left to right in each level.
• DFS explores nodes depth-wise, going as deep as possible along a path before

backtracking.

• Data Structure:
• BFS uses a queue to store nodes for exploration.
• DFS uses a stack (or recursion) to store nodes for exploration.

• Shortest Path:
• BFS is guaranteed to find the shortest path in unweighted graphs.
• DFS may not find the shortest path, as it can explore a deeper path that may

not be optimal.

9

When to Use Which

• BFS:
• When you need to find the shortest path in an unweighted graph.

• For level-order traversal of trees.

• To find connected components in a graph.

• DFS:
• When you need to explore all possible paths in a graph.

• For topological sorting or cycle detection.

• For maze solving or game-tree search.

10

Quality of Solution

Correctness:

• Does the solution accurately address the problem?

• Are there any errors or bugs in the implementation?

• Does it produce the expected output for various inputs?

Efficiency:

• How fast does the solution run?

• Does it use efficient algorithms and data structures?

• Can the performance be improved?

11

Readability:

• Is the code well-formatted and easy to understand?

• Are variable and function names meaningful?

• Are comments used to explain complex logic?

Maintainability:

• Is the code modular and easy to modify?

• Can changes be made without introducing errors?

• Is the solution scalable to handle future requirements?

12

Testability:

• Is the solution well-tested with a variety of inputs?

• Are there unit tests and integration tests in place?

Elegance:

• Is the solution concise and elegant?

• Does it avoid unnecessary complexity?

• Is it a pleasure to read and understand?

13

Depth Bounded DFS

• Depth-Bounded DFS (DBFS) is a variant of Depth-First Search (DFS)
that limits the depth of the search to a specified bound. This can be
useful in situations where the search space is very large and exploring
all possible paths would be computationally expensive or impractical.

• Set a depth limit, which determines the maximum depth that the
search can reach.

• If the search reaches the depth limit, it backtracks to the previous
node and continues the search from there.

14

Pseudocode:

function DBFS(graph, start, depth_limit):

 visited = set()

 stack = [(start, 0)] # (node, depth)

 while stack:

 node, depth = stack.pop()

 if depth > depth_limit:

 continue # Ignore nodes beyond the depth limit

 if node not in visited:

 visited.add(node)

 # Process the node (e.g., print its value or check if it's the target)

 for neighbor in graph[node]:

 stack.append((neighbor, depth + 1))

15

Applications

• Game Tree Search: In games like chess or Go, DBFS can be used to
explore the game tree to a certain depth to evaluate possible moves.

• Constraint Satisfaction Problems: DBFS can be used to solve
problems with constraints, such as Sudoku or the N-Queens problem,
by limiting the search to a certain depth.

• Pathfinding: DBFS can be used to find paths in a graph with a limited
number of steps.

16

Advantages:

• Can be more efficient than DFS for large search spaces.

• Can be used to find solutions within a specified time or resource
constraint.

Disadvantages:

• May not find the optimal solution if the depth limit is too low.

• Can be sensitive to the choice of depth limit.

17

Depth-First Iterative Deepening (DFID)

• Depth-First Iterative Deepening (DFID) is a search algorithm that
combines the benefits of depth-first search (DFS) and breadth-first
search (BFS). It's particularly useful for problems where the solution
depth is unknown or may vary significantly.

18

How DFID Works

1.Start with a depth limit of 0.

2.Perform a depth-first search (DFS) up to the current depth limit.

3.If a solution is found, return it.

4.If no solution is found, increase the depth limit by 1 and repeat
steps 2-3.

19

• Efficiency: It's more efficient than BFS in terms of space complexity, as
it only needs to store the current path.

• Completeness: It's complete, meaning it will always find a solution if
one exists.

• Time Complexity: Its time complexity is similar to BFS in the worst
case, but it can be more efficient in practice, especially if the solution
depth is relatively small.

• Space Complexity: Its space complexity is O(d), where d is the depth
of the solution.

20

Advantages of DFID

• Efficient Space Usage: Compared to BFS, DFID requires less memory.

• Completeness: It guarantees to find a solution if one exists.

• Can Handle Varying Solution Depths: It's well-suited for problems
where the solution depth is unknown or can vary.

Disadvantages of DFID

• Re-Explores Nodes: It can re-explore nodes multiple times, which can
be inefficient in some cases.

21

Applications of DFID

• Game-Playing: DFID is often used in game-playing algorithms, such as
those for chess and Go, to explore the search space efficiently.

• Planning: It can be applied to planning problems where the goal state
is unknown or the path to the goal may vary in length.

• Constraint Satisfaction Problems: DFID can be used to solve
constraint satisfaction problems, such as Sudoku and Minesweeper.

22

Depth Bounded DFS Video

https://www.youtube.com/watch?v=P7WQUBLKDmo

23

https://www.youtube.com/watch?v=P7WQUBLKDmo

Depth First Iterative Deepening Video

https://www.youtube.com/watch?v=BK8cEWKHCkY

24

https://www.youtube.com/watch?v=BK8cEWKHCkY

	Slide 1: Search Methods Unit No 2
	Slide 2: Breadth First search (BFS)
	Slide 3: Algorithm Steps:
	Slide 4: Algorithm Steps:
	Slide 5: Pseudocode:
	Slide 6: Applications
	Slide 7: Video
	Slide 8: Comparison Between BFS and DFS
	Slide 9: Key Differences
	Slide 10: When to Use Which
	Slide 11: Quality of Solution
	Slide 12
	Slide 13
	Slide 14: Depth Bounded DFS
	Slide 15: Pseudocode:
	Slide 16: Applications
	Slide 17
	Slide 18: Depth-First Iterative Deepening (DFID)
	Slide 19: How DFID Works
	Slide 20
	Slide 21
	Slide 22: Applications of DFID
	Slide 23: Depth Bounded DFS Video
	Slide 24: Depth First Iterative Deepening Video

