
Search Methods
Unit No 2

Dr. Praveen Barapatre

1

Heuristic Search

• Heuristic search is a problem-solving technique that utilizes a
function, called a heuristic, to estimate the cost or distance
to the goal. This function guides the search algorithm
towards promising paths, reducing the number of explored
states and improving efficiency compared to exhaustive
search methods.

2

• Heuristic Function: A function that estimates the cost or distance
from a given state to the goal state. It helps the search algorithm
prioritize paths that are more likely to lead to a solution.

• Informative Heuristic: A heuristic that provides a good estimate of the
actual cost to the goal, leading to more efficient searches.

3

• Admissible Heuristic: A heuristic that never overestimates the cost to
reach the goal. This ensures that the search algorithm finds the
optimal solution.

• Consistent Heuristic: A heuristic that satisfies the triangle inequality,
meaning that the estimated cost from node A to the goal is less than
or equal to the estimated cost from node A to node B plus the
estimated cost from node B to the goal.

4

Common Heuristic Search Algorithms:

• A Search:* Combines the estimated cost to the goal (heuristic) with
the actual cost from the start node to prioritize paths.

• Greedy Best-First Search: Prioritizes nodes based solely on the
heuristic function, often leading to suboptimal solutions.

• Hill Climbing: Moves towards the goal by always choosing the
neighbor with the lowest heuristic value.

• Beam Search: Maintains a fixed-size list of promising nodes and
explores only the best ones.

5

Applications

• Artificial Intelligence: Pathfinding in games, planning, and problem-
solving.

• Robotics: Navigation, task planning, and obstacle avoidance.

• Operations Research: Optimization problems, scheduling, and
resource allocation.

6

Advantages

• Efficiency: Heuristic search can significantly reduce the number of
explored states compared to exhaustive search.

• Completeness: If the heuristic is admissible, A* search guarantees to
find the optimal solution.

• Flexibility: Heuristic functions can be tailored to specific problem
domains.

7

Disadvantages

• Suboptimality: Greedy best-first search and hill climbing may not
always find the optimal solution.

• Heuristic Quality: The effectiveness of heuristic search depends on
the quality of the heuristic function.

• Computational Cost: In some cases, the computational cost of
evaluating the heuristic function can be significant.

8

Example:

• Consider the problem of finding the shortest path between two cities
on a map. A heuristic function could estimate the distance between a
city and the destination using Euclidean distance or Manhattan
distance. A* search would use this heuristic to prioritize paths that
are closer to the goal, leading to a more efficient search.

9

Best-first search

•Best-first search is a search algorithm that explores
nodes based on an evaluation function. This function
estimates how close a node is to the goal. The
algorithm always expands the node with the highest
estimated value.

10

How Does it Work?

1.Start Node: Begin with the starting node.

2.Evaluation Function: Calculate the estimated cost of reaching the
goal from each neighbor of the current node.

3.Expansion: Expand the node with the highest estimated value.

4.Repeat: Continue steps 2 and 3 until the goal node is reached or the
search space is exhausted.

11

• Evaluation Function (Heuristic): This function provides an estimate of how
close a node is to the goal.
• Admissible: A heuristic is admissible if it never overestimates the cost to

reach the goal.
• Consistent: A heuristic is consistent if the estimated cost to reach the

goal from a node is always less than or equal to the estimated cost to
reach the goal from any of its successors plus the cost to reach that
successor.

• Open List: A data structure (e.g., priority queue) that stores nodes that
have been discovered but not yet explored.

• Closed List: A data structure that stores nodes that have already been
explored.

12

Advantages

• Efficiency: Can be more efficient than uninformed search algorithms
like breadth-first or depth-first search, especially with good heuristics.

• Completeness: Guaranteed to find a solution if one exists.

• Optimality: If the heuristic is admissible, best-first search will find an
optimal solution.

13

Disadvantages

• Heuristic Dependence: The quality of the heuristic significantly
impacts the algorithm's performance. A poorly designed heuristic can
lead to inefficient searches.

• Space Complexity: Can require significant memory, especially for
large search spaces.

14

Examples of Best-First Search

• A Search:* A popular variant of best-first search that uses the sum of
the path cost from the start node and the estimated cost to reach the
goal as the evaluation function.

• Greedy Best-First Search: A simplified version that only considers the
estimated cost to reach the goal.

15

Best-First Search Video

https://www.youtube.com/watch?v=Gbw1IsnY7KE

16

https://www.youtube.com/watch?v=Gbw1IsnY7KE

A* Search Video

https://www.youtube.com/watch?v=AnOQYr8nabc

17

https://www.youtube.com/watch?v=AnOQYr8nabc

Greedy Best-First Search Video

https://www.youtube.com/watch?v=dv1m3L6QXWs

18

https://www.youtube.com/watch?v=dv1m3L6QXWs

Hill Climbing Search Video

https://www.youtube.com/watch?v=2SlO34_VsY4

19

https://www.youtube.com/watch?v=2SlO34_VsY4

Beam Search Video

https://www.youtube.com/watch?v=KVR8J3iPszw

20

https://www.youtube.com/watch?v=KVR8J3iPszw

Local Maxima

• Local maxima are a common challenge in optimization problems,
particularly in machine learning and artificial intelligence.

• They represent points in the search space where the objective
function reaches a peak, but there may be other, higher peaks
elsewhere.

21

Why Local Maxima Are a Problem

1.Suboptimal Solutions: When an optimization algorithm gets stuck in
a local maximum, it may return a solution that is not the best
possible. This can lead to suboptimal performance in various machine
learning tasks.

2.Inefficient Training: If an algorithm repeatedly encounters local
maxima, it can significantly slow down the training process, as it may
need to explore many different regions of the search space.

22

How to Mitigate Local Maxima

1.Larger Datasets: Increasing the size of the training dataset can help reduce
the likelihood of getting stuck in local maxima. A larger dataset provides
more information, making it less likely for the algorithm to find a
suboptimal solution.

2.Initialization Strategies: Careful initialization of the algorithm's parameters
can also help avoid local maxima. Techniques like random initialization or
using pre-trained models can improve the chances of finding a global
optimum.

3.Optimization Algorithms: Some optimization algorithms are specifically
designed to handle local maxima. For example, simulated annealing and
genetic algorithms incorporate randomness to explore the search space
more thoroughly and avoid getting trapped in local optima.

23

How to Mitigate Local Maxima

4. Momentum: Adding momentum to the optimization process can
help the algorithm "jump" out of local maxima. Momentum allows
the algorithm to continue moving in a direction even if the gradient
is small, making it more likely to reach a global optimum.

5. Learning Rate Scheduling: Adjusting the learning rate during
training can also be helpful. A decreasing learning rate can help the
algorithm converge to a local minimum more slowly, giving it a
better chance to escape local maxima.

24

Examples of Local Maxima in AI

• Neural Networks: In training neural networks, local maxima can occur
when the optimization algorithm gets stuck in a region of the
parameter space where the loss function is relatively high.

• Reinforcement Learning: In reinforcement learning, agents may learn
suboptimal policies if they get stuck in local maxima of the reward
function.

25

Local Maxima Video

https://www.youtube.com/watch?v=nICLY0UlTI0

26

https://www.youtube.com/watch?v=nICLY0UlTI0

Solution Space Search

• Solution space search is a core concept in artificial intelligence,
particularly in optimization problems and search algorithms. It refers
to the process of exploring a set of possible solutions to a given
problem.

27

Components of Solution Space Search

1.Solution Space: This is the set of all possible solutions to a problem.
It can be finite or infinite, depending on the nature of the problem.

2.Search Algorithm: An algorithm that systematically explores the
solution space to find a solution that satisfies the problem's
constraints.

3.Evaluation Function: A function used to assess the quality of a
solution. It helps the search algorithm prioritize solutions and
determine if they are optimal or suboptimal.

28

Common Search Algorithms

• Brute-Force Search: This is the most straightforward approach, where
every possible solution is evaluated. It's often inefficient for large
problem spaces.

• Heuristic Search: Heuristic algorithms use domain-specific knowledge
to guide the search towards promising solutions. Examples include hill
climbing, beam search, and A* search.

29

Common Search Algorithms

• Metaheuristics: These are general-purpose optimization algorithms
that can be applied to various problems. They often involve random
exploration and exploitation of promising regions of the solution
space. Examples include genetic algorithms, simulated annealing, and
particle swarm optimization.

30

Variable Neighbourhood Descent

• Variable Neighborhood Descent (VND) is a metaheuristic
optimization algorithm that combines the simplicity of local search
with the ability to escape local optima. It's a powerful technique for
solving combinatorial optimization problems.

31

How VND Works

1.Initialization: Start with an initial solution.

2.Local Search: Apply a local search algorithm (e.g., hill climbing) to
find a local optimum.

3.Neighborhood Change: Switch to a different neighborhood structure.
A neighborhood structure defines the set of solutions that can be
reached from the current solution by making a small change.

4.Repeat: Repeat steps 2 and 3 until no improvement is found in any
neighborhood.

32

Key Features of VND

• Flexibility: VND can be combined with various local search algorithms
and neighborhood structures.

• Efficiency: It's often more efficient than pure local search, as it can
explore a larger portion of the solution space.

• Simplicity: The algorithm is easy to understand and implement.

33

Applications of VND

• Combinatorial Optimization: Traveling salesman problem, quadratic
assignment problem, facility location problem, etc.

• Scheduling: Job shop scheduling, project scheduling, etc.

• Graph Theory: Graph coloring, maximum clique, etc.

34

Advantages of VND

• Effective in escaping local optima: VND can often escape local optima
by exploring different neighborhoods.

• Simple and easy to implement: The algorithm is relatively
straightforward to understand and code.

• Can be combined with other metaheuristics: VND can be integrated
with other metaheuristics like simulated annealing or genetic
algorithms to improve performance.

35

Disadvantages of VND

• Can get stuck in local optima: While VND is effective at escaping
some local optima, it may still get trapped in others.

• May be computationally expensive: For large problem instances,
VND can be computationally expensive, especially if the
neighborhood structures are complex.

36

Beam Search

• Beam Search is a heuristic search algorithm that is commonly used in
artificial intelligence, particularly in natural language processing and
machine translation. It's an efficient alternative to exhaustive search,
which can be computationally expensive for large search spaces.

37

How Beam Search Works

1.Initialization: Start with a set of initial states (e.g., the empty sequence in
natural language generation).

2.Expansion: Expand each state by generating all possible successor states.

3.Evaluation: Evaluate each successor state using a scoring function (e.g., a
language model or a reward function in reinforcement learning).

4.Selection: Select the top K highest-scoring states, where K is the beam
width.

5.Repeat: Repeat steps 2-4 until a terminal state is reached or a maximum
search depth is exceeded.

38

Key Features of Beam Search

• Efficiency: Beam search is much more efficient than exhaustive
search, as it only explores a subset of the search space.

• Heuristic: It uses a heuristic function to guide the search towards
promising states.

• Beam Width: The beam width K determines the number of states
explored at each level of the search tree. A larger beam width can
improve the accuracy but increases computational cost.

39

Applications of Beam Search

• Natural Language Processing: Machine translation, text
summarization, dialogue systems

• Reinforcement Learning: Finding optimal policies in complex
environments

• Planning: Generating plans in AI planning systems

40

Advantages of Beam Search

• Efficient: Beam search is computationally efficient compared to
exhaustive search.

• Effective: It can find good solutions, especially for problems with a
clear objective function.

• Flexible: Beam search can be adapted to various domains and
problem formulations.

41

Disadvantages of Beam Search

• Suboptimal Solutions: Beam search may not find the optimal
solution, as it discards low-scoring states.

• Sensitivity to Beam Width: The choice of beam width can
significantly impact the performance of beam search.

• Local Optima: Beam search can get stuck in local optima, especially if
the heuristic function is not accurate.

42

Tabu Search

• Tabu Search is a metaheuristic optimization algorithm that combines
local search with memory-based mechanisms to avoid getting
trapped in local optima. It's a popular technique for solving
combinatorial optimization problems.

43

How Tabu Search Works

1.Initialization: Start with an initial solution.

2.Neighborhood Search: Generate a neighborhood of solutions from
the current solution.

3.Tabu List Update: Update the tabu list, which stores recently visited
solutions to prevent cycling.

4.Best Solution Selection: Choose the best solution from the
neighborhood that is not tabu.

5.Repeat: Repeat steps 2-4 until a termination criterion is met (e.g., a
maximum number of iterations).

44

Key Components of Tabu Search

• Local Search: A local search algorithm (e.g., hill climbing) is used to
explore the neighborhood of solutions.

• Tabu List: A list of recently visited solutions that are forbidden (tabu)
for a certain number of iterations.

• Aspiration Criterion: A condition that allows tabu solutions to be
accepted if they are significantly better than the current best solution.

45

Applications of Tabu Search

• Combinatorial Optimization: Traveling salesman problem, quadratic
assignment problem, facility location problem, etc.

• Scheduling: Job shop scheduling, project scheduling, etc.

• Graph Theory: Graph coloring, maximum clique, etc.

46

Advantages of Tabu Search

• Effective in escaping local optima: Tabu search can avoid getting
stuck in local optima by using the tabu list to prevent cycling.

• Flexible: It can be combined with various local search algorithms and
tabu list strategies.

• Can handle large problem instances: Tabu search is often effective
for solving large-scale optimization problems.

47

Disadvantages of Tabu Search

• Can be computationally expensive: For complex problems, tabu
search can be computationally expensive, especially if the
neighborhood structures are large.

• Parameter tuning: The performance of tabu search can be sensitive
to the choice of parameters, such as the size of the tabu list and the
aspiration criterion.

48

Peak to peak method

49

50

	Slide 1: Search Methods Unit No 2
	Slide 2: Heuristic Search
	Slide 3
	Slide 4
	Slide 5: Common Heuristic Search Algorithms:
	Slide 6: Applications
	Slide 7: Advantages
	Slide 8: Disadvantages
	Slide 9
	Slide 10: Best-first search
	Slide 11: How Does it Work?
	Slide 12
	Slide 13: Advantages
	Slide 14: Disadvantages
	Slide 15: Examples of Best-First Search
	Slide 16: Best-First Search Video
	Slide 17: A* Search Video
	Slide 18: Greedy Best-First Search Video
	Slide 19: Hill Climbing Search Video
	Slide 20: Beam Search Video
	Slide 21: Local Maxima
	Slide 22: Why Local Maxima Are a Problem
	Slide 23: How to Mitigate Local Maxima
	Slide 24: How to Mitigate Local Maxima
	Slide 25: Examples of Local Maxima in AI
	Slide 26: Local Maxima Video
	Slide 27: Solution Space Search
	Slide 28: Components of Solution Space Search
	Slide 29: Common Search Algorithms
	Slide 30: Common Search Algorithms
	Slide 31: Variable Neighbourhood Descent
	Slide 32: How VND Works
	Slide 33: Key Features of VND
	Slide 34: Applications of VND
	Slide 35: Advantages of VND
	Slide 36: Disadvantages of VND
	Slide 37: Beam Search
	Slide 38: How Beam Search Works
	Slide 39: Key Features of Beam Search
	Slide 40: Applications of Beam Search
	Slide 41: Advantages of Beam Search
	Slide 42: Disadvantages of Beam Search
	Slide 43: Tabu Search
	Slide 44: How Tabu Search Works
	Slide 45: Key Components of Tabu Search
	Slide 46: Applications of Tabu Search
	Slide 47: Advantages of Tabu Search
	Slide 48: Disadvantages of Tabu Search
	Slide 49: Peak to peak method
	Slide 50

