Constraint Satisfaction
Unit No 5

Dr. Praveen Barapatre



Constraint Satisfaction

* A Constraint Satisfaction Problem (CSP) is a mathematical problem
where we need to find a solution that satisfies a given set of
constraints. It's a common paradigm in artificial intelligence and
operations research



Key Components of a CSP

Variables:
* These are the unknowns that need to be assigned values.

 Domains: Each variable has a domain, which is the set of possible
values it can take.

* Constraints: These are the restrictions on the values that can be
assigned to the variables. Constraints can be unary (involving a single

variable), binary (involving two variables), or higher-order (involving
more than two variables).



Various techniques are used to solve CSPs

Backtracking Search:

* A systematic search algorithm that explores the search space by making
assignments to variables one at a time.

* |f a partial assignment violates a constraint, the algorithm backtracks to the
previous variable and tries a different value.

Constraint Propagation:

* A technique that reduces the domains of variables by removing values that
cannot be part of any solution.

« Common techniques include arc consistency, forward checking, and AC-3.
Local Search:

* A heuristic-based approach that starts with an initial assignment and
iteratively improves it by making small changes.

* Techniques like hill climbing, simulated annealing, and genetic algorithms
are often used.



Real-World Applications of CSPs

* Scheduling: Scheduling tasks, appointments, or resources.

* Resource Allocation: Allocating resources to tasks or
projects.

* Robotics: Planning robot movements and actions.
* Computer Vision: Image analysis and object recognition.
* Natural Language Processing: Parsing and semantic analysis.



N-Queens Problem

How to solve it

There are several approaches to solve this problem, but a common one
involves backtracking:

Backtracking Algorithm:
* |nitialize: Create an empty NxN chessboard.

* Place Queen: Start with the first row and try to place a queen in each
column of that row.

e Check for Conflicts: For each placement, check if it conflicts with any
previously placed queen.

e Backtrack: If a conflict is found, backtrack to the previous row and try a
different column.

e Recurse: If no conflict is found, recursively place a queen in the next row.

. Sollution: If all N queens are placed without conflicts, you have found a
solution.



he N Queen is the prob
gueens on an NxN chess

gueens attack each other.

em of placing N chess
noard so that no two

ﬁ

X B X

Ql

Q2

4 x 4 Chess Board

N Queen Problem =12



I

Solution Of 4 Queen Problem oG




* The expected output is in the form of a matrix that has ‘Q’s for the
blocks where queens are placed and the empty spaces are
represented by V. For example, the following is the output matrix for
the above 4-Queen solution.

.Q..
. Q

.. Q.



N Queen Problem using Backtracking

* The idea is to place queens one by one in different columns, starting
from the leftmost column.

* When we place a queen in a column, we check for clashes with
already placed queens.

* |In the current column, if we find a row for which there is no clash, we
mark this row and column as part of the solution.

* |f we do not find such a row due to clashes, then we backtrack and
return false.






Follow the steps mentioned below to
implement the idea:

1. Start in the leftmost column
2. If all queens are placed return true
3. Try all rows in the current column. Do the following for every row.



4. If the queen can be placed safely in this row

1. Then mark this [row, column] as part of the solution and
recursively check if placing queen here leads to a
solution.

2. If placing the queen in [row, column] leads to a solution
then return true.

3. If placing queen doesn’t lead to a solution then unmark
this [row, column] then backtrack and try other rows.

5. If all rows have been tried and valid solution is not found
return false to trigger backtracking.



