
Constraint Satisfaction
Unit No 5 

Dr. Praveen Barapatre

1



Constraint Satisfaction

• A Constraint Satisfaction Problem (CSP) is a mathematical problem
where we need to find a solution that satisfies a given set of
constraints. It's a common paradigm in artificial intelligence and
operations research

2



Key Components of a CSP

Variables:

• These are the unknowns that need to be assigned values.

• Domains: Each variable has a domain, which is the set of possible 
values it can take.

• Constraints: These are the restrictions on the values that can be 
assigned to the variables. Constraints can be unary (involving a single 
variable), binary (involving two variables), or higher-order (involving 
more than two variables).

3



Various techniques are used to solve CSPs
Backtracking Search:
• A systematic search algorithm that explores the search space by making 

assignments to variables one at a time.
• If a partial assignment violates a constraint, the algorithm backtracks to the 

previous variable and tries a different value.
Constraint Propagation:
• A technique that reduces the domains of variables by removing values that 

cannot be part of any solution.
• Common techniques include arc consistency, forward checking, and AC-3.
Local Search:
• A heuristic-based approach that starts with an initial assignment and 

iteratively improves it by making small changes.
• Techniques like hill climbing, simulated annealing, and genetic algorithms 

are often used.

4



Real-World Applications of CSPs

• Scheduling: Scheduling tasks, appointments, or resources.

• Resource Allocation: Allocating resources to tasks or 
projects.

• Robotics: Planning robot movements and actions.

• Computer Vision: Image analysis and object recognition.

• Natural Language Processing: Parsing and semantic analysis.

5



N-Queens Problem
How to solve it
There are several approaches to solve this problem, but a common one 
involves backtracking:
Backtracking Algorithm:
• Initialize: Create an empty N×N chessboard.
• Place Queen: Start with the first row and try to place a queen in each 

column of that row.
• Check for Conflicts: For each placement, check if it conflicts with any 

previously placed queen.
• Backtrack: If a conflict is found, backtrack to the previous row and try a 

different column.
• Recurse: If no conflict is found, recursively place a queen in the next row.
• Solution: If all N queens are placed without conflicts, you have found a 

solution.

6



The N Queen is the problem of placing N chess 
queens on an N×N chessboard so that no two 
queens attack each other. 

7



8



• The expected output is in the form of a matrix that has ‘Q‘s for the 
blocks where queens are placed and the empty spaces are 
represented by ‘.’ . For example, the following is the output matrix for 
the above 4-Queen solution.

. Q . .

. . . Q 
Q . . .
. . Q . 

9



N Queen Problem using Backtracking

• The idea is to place queens one by one in different columns, starting
from the leftmost column.

• When we place a queen in a column, we check for clashes with
already placed queens.

• In the current column, if we find a row for which there is no clash, we
mark this row and column as part of the solution.

• If we do not find such a row due to clashes, then we backtrack and
return false.

10



11



Follow the steps mentioned below to 
implement the idea:
1. Start in the leftmost column

2. If all queens are placed return true

3. Try all rows in the current column. Do the following for every row.

12



4. If the queen can be placed safely in this row
1. Then mark this [row, column] as part of the solution and 

recursively check if placing queen here leads to a 
solution.

2. If placing the queen in [row, column] leads to a solution 
then return true.

3. If placing queen doesn’t lead to a solution then unmark 
this [row, column] then backtrack and try other rows.

5. If all rows have been tried and valid solution is not found 
return false to trigger backtracking.

13


