Search Methods

Unit No 2

Dr. Praveen Barapatre

Search Methods

* Search methods are fundamental to artificial intelligence, providing a
systematic way to explore a problem space and find solutions. They
are often used in tasks such as game-playing, planning, and problem-
solving.

Types of Search Methods

Uninformed Search: These methods do not have any additional
information about the problem domain. They explore the search space
blindly, relying solely on the search algorithm itself.

1. Breadth-First Search (BFS): Explores all nodes at a given depth before moving
to the next level.

2. Depth-First Search (DFS): Explores a path as far as possible before
backtracking.

3. Uniform-Cost Search: Expands nodes based on their total cost from the start
state.

* Informed Search: These methods utilize domain-specific knowledge
to guide the search towards promising solutions.

* A Search:* Combines the heuristic function (estimated cost to the
goal) with the actual cost to the node to prioritize the search.

* Greedy Best-First Search: Prioritizes nodes based solely on the
heuristic function.

* Hill Climbing: Moves towards the highest-valued neighbor until a
local maximum is reached.

e Search Space: The set of all possible states that an agent can reach.
 State: A representation of the current situation in the problem.
* Goal State: The desired final state.

e Action: A transformation that can be applied to a state to reach
another state.

* Heuristic Function: Estimates the cost to reach the goal from a given
state.

Applications

Search methods are used in a wide range of Al applications, including:
* Game-Playing: Finding optimal moves in games like chess and Go.

* Planning: Generating plans to achieve goals in complex environments.
* Problem-Solving: Solving puzzles and riddles.

* Robotics: Pathfinding for robots navigating in unknown
environments.

* Natural Language Processing: Parsing sentences and understanding
language.

Choosing the Right Search Method

The best search method depends on the specific problem and its
characteristics. Factors to consider include:

* Size of the search space: Large search spaces may require more
efficient algorithms.

* Nature of the problem: Some problems may have specific properties
that can be exploited by certain search methods.

* Availability of heuristic information: Informed search methods are
more effective when a good heuristic function is available.

State Space Search

e State space search is a fundamental technique in artificial intelligence that
involves exploring a set of possible configurations (states) to find a solution
to a problem. It's often used in problem-solving, planning, and game-

playing.
 State: A representation of a particular configuration of the problem.

e Action: A transformation that can be applied to a state to reach another
state.

* |nitial State: The starting point of the search.
* Goal State: The desired final configuration.

* Search Space: The set of all possible states that can be reached from the
initial state.

Example: The 8-Puzzle

* The 8-puzzle is a classic example of state space search. The goal is to
rearrange a 3x3 grid of numbered tiles (1-8) to a specific target
configuration. Each move involves sliding a tile into an adjacent
empty space.

Generate and Test

e G&T is a simple yet effective search algorithm that involves generating
potential solutions and testing them against a given criteria. It's particularly
useful for problems where the solution space is relatively small and well-
defined.

Steps Involved:

1.Generate: Generate a potential solution candidate. This can be done
randomly, systematically, or using domain-specific knowledge.

2.Test: Evaluate the generated solution against the problem's constraints and
goals. If the solution meets the criteria, it is considered a valid solution.

3.Repeat: If no valid solution is found, repeat steps 1 and 2 until a solution is
discovered or a predetermined termination condition is met.

Example

The 8-puzzle is a classic example of G&T search. The goal is to

rearrange a 3x3 grid of numbered tiles (1-8) to a specific target
configuration.

1.Generate: Generate a random configuration of the tiles.

2.Test: Check if the generated configuration matches the target
configuration.

3.Repeat: If not, generate a new random configuration and repeat until
a solution is found or a maximum number of attempts is reached.

e Efficiency: G&T can be inefficient for large search spaces.

e Heuristics: Incorporating heuristics can improve efficiency by guiding
the search towards promising solutions.

* Termination Conditions: Defining appropriate termination conditions
is crucial to prevent infinite loops.

Simple Search

* Simple search is a fundamental technique in artificial intelligence (Al)
used to explore a problem space and find solutions. It's often
employed in tasks such as game-playing, planning, and problem-
solving.

Depth-First Search (DFS)

* Depth-First Search (DFS) is a graph traversal algorithm that explores
as far as possible along each branch before backtracking. It's often
used in situations where finding a solution quickly is more important
than finding the optimal solution.

How DFS Works

1.Start: Begin at a chosen starting node.

2.Explore: Explore the current node's neighbors one by one, going
deeper into the graph.

3.Backtrack: If a dead-end or previously visited node is reached,
backtrack to the previous node and explore its remaining unexplored

neighbors.

4.Repeat: Continue exploring and backtracking until the goal state is
reached or all possible paths have been explored.

Pseudocode

function dfs(node):
if node is goal:
return node
mark node as visited
for each neighbor of node:
if neighbor is not visited:
result = dfs(neighbor)
if result is not None:
return result
return None

Advantages of DFS

e Efficient memory usage: DFS requires less memory than BFS as it only
needs to store the current path.

* Can find solutions quickly: DFS may find a solution without exploring
the entire search space, especially if the goal is deep in the graph.

* Suitable for depth-limited search: DFS can be used with depth limits
to prevent infinite loops.

Disadvantages of DFS

* May get stuck in infinite loops: If the graph contains cycles, DFS can
explore a path indefinitely.

* May not find the optimal solution: DFS doesn't guarantee finding the
shortest path to the goal.

Applications

* Maze solving: Finding a path through a maze.
* Graph traversal: Exploring all nodes in a graph.

 Game-playing: Searching for possible moves in games like chess and
Go.

 Web crawling: Discovering new web pages.

Video

https://www.youtube.com/watch?v=7fujbpJOLB4

https://www.youtube.com/watch?v=7fujbpJ0LB4

	Slide 1: Search Methods Unit No 2
	Slide 2: Search Methods
	Slide 3: Types of Search Methods
	Slide 4
	Slide 5
	Slide 6: Applications
	Slide 7: Choosing the Right Search Method
	Slide 8: State Space Search
	Slide 9
	Slide 10: Generate and Test
	Slide 11: Example
	Slide 12
	Slide 13: Simple Search
	Slide 14: Depth-First Search (DFS)
	Slide 15: How DFS Works
	Slide 16: Pseudocode
	Slide 17: Advantages of DFS
	Slide 18: Disadvantages of DFS
	Slide 19: Applications
	Slide 20: Video

