
Randomized Search
Unit No 3

Dr. Praveen Barapatre

1

Randomized Search

• Randomized Search is a hyperparameter optimization technique
widely used in machine learning and deep learning. It's a simple yet
effective method that involves randomly sampling different
combinations of hyperparameters from a predefined search space.

2

How Does it Work?

1.Define Search Space: You specify the range or set of possible values
for each hyperparameter you want to optimize.

2.Random Sampling: The algorithm randomly selects combinations of
hyperparameters within this search space.

3.Model Training: A model is trained with each randomly selected
combination of hyperparameters.

4.Evaluation: The performance of the model is evaluated on a
validation set.

5.Iteration: This process is repeated for a specified number of
iterations or until a satisfactory performance is achieved.

3

Advantages of Randomized Search

• Efficiency: It can be more efficient than grid search, especially for
large search spaces.

• Simplicity: The concept is straightforward to understand and
implement.

• Effectiveness: It often finds good solutions, especially when the
search space is not highly correlated.

4

Limitations of Randomized Search

• Randomness: It may miss the global optimum if the search space is
large and complex.

• Efficiency: It can be less efficient than more sophisticated methods
like Bayesian optimization for highly correlated search spaces.

5

When to Use Randomized Search

• Initial Exploration: To quickly get a sense of the performance
landscape.

• Large Search Spaces: When grid search is computationally expensive.

• Non-Correlated Hyperparameters: When there are no strong
dependencies between hyperparameters.

6

Population-Based Methods in Randomized
Search
• While traditional Randomized Search involves randomly sampling

individual hyperparameter combinations, population-based methods
introduce a more structured approach by maintaining and evolving a
population of potential solutions. These methods often draw
inspiration from natural evolution and optimization algorithms.

7

Escaping Local Optima

• Local optima are suboptimal solutions that a search algorithm might
get stuck in. They're points in the search space where the objective
function is locally optimal, but not globally optimal. Escaping these
local optima is a crucial challenge in many optimization problems.

8

Strategies to Escape Local Optima

Random Restart

• Multiple Starts: Begin the optimization process from multiple random
starting points.

• Increased Coverage: This increases the likelihood of exploring
different regions of the search space.

• Reduced Risk: It reduces the risk of getting trapped in the same local
optimum.

9

Strategies to Escape Local Optima

Simulated Annealing:

• Temperature: A temperature parameter controls the probability of
accepting a worse solution.

• Cooling Schedule: The temperature is gradually decreased over time.

• Exploration-Exploitation: At high temperatures, the algorithm
explores the search space, while at low temperatures, it exploits
promising regions.

10

Strategies to Escape Local Optima

Genetic Algorithms (GAs):

• Population Diversity: Maintaining a diverse population helps avoid
premature convergence.

• Crossover and Mutation: Genetic operators encourage exploration
and prevent getting stuck in local optima.

11

Strategies to Escape Local Optima

Particle Swarm Optimization (PSO):

• Inertia: A parameter controls the balance between exploration and
exploitation.

• Social and Cognitive Components: These components help particles
escape local optima by considering both their own experience and
the swarm's collective experience.

12

Strategies to Escape Local Optima

Differential Evolution (DE):

• Mutation Strategy: The mutation strategy can be designed to
encourage exploration and avoid premature convergence.

Hybrid Approaches:

• Combining Methods: Combining multiple techniques can leverage
their strengths and mitigate their weaknesses.

• Enhanced Effectiveness: This can lead to more robust and effective
optimization.

13

Iterated Hill Climbing

• Iterated Hill Climbing is a metaheuristic optimization algorithm that
combines the simplicity of hill climbing with the exploration
capabilities of random restarts. It involves repeatedly applying the hill
climbing algorithm from different starting points, aiming to escape
local optima and find better solutions.

14

How It Works

1.Random Initialization: The algorithm starts with a randomly
generated initial solution.

2.Hill Climbing: The hill climbing algorithm is applied to find a local
optimum.

3.Evaluation: The quality of the local optimum is evaluated.

4.Random Restart: A new random initial solution is generated.

5.Iteration: Steps 2-4 are repeated for a specified number of iterations.

15

Advantages of Iterated Hill Climbing

• Simplicity: It's easy to understand and implement.

• Efficiency: It can be computationally efficient, especially for smaller
problems.

• Exploration: Repeated restarts allow for exploration of different
regions of the search space.

• Local Optima Avoidance: It can help avoid getting stuck in local
optima.

16

Disadvantages of Iterated Hill Climbing

• Randomness: The quality of the final solution depends on the
randomness of the initial solutions.

• Efficiency: It can be less efficient than more sophisticated algorithms
for large and complex problems.

• Local Optima: While it helps avoid local optima, it doesn't guarantee
finding the global optimum.

17

When to Use Iterated Hill Climbing

• Simple Problems: When the problem is relatively simple and the
search space is not too large.

• Initial Exploration: As a preliminary exploration technique to get a
sense of the problem landscape.

• Local Optima Avoidance: When you want to increase the chances of
avoiding local optima.

18

Simulated Annealing

• Simulated Annealing is a metaheuristic optimization algorithm
inspired by the process of annealing in metallurgy, where a material is
heated to a high temperature and then slowly cooled down. This
process allows the material to reach a low-energy state, minimizing its
defects.

19

How It Works
1.Initialization: Start with a randomly generated initial solution.

2.Temperature: Set an initial temperature.

3.Perturbation: Generate a new solution by making a small random change
to the current solution.

4.Energy Calculation: Calculate the energy (or cost) of the new solution.

5.Acceptance:
1. If the new solution has lower energy, accept it.

2. If the new solution has higher energy, accept it with a probability that decreases as
the temperature decreases. This allows the algorithm to occasionally explore
suboptimal solutions, potentially leading to better solutions in the long run.

6.Cooling: Reduce the temperature according to a cooling schedule.

7.Iteration: Repeat steps 3-6 until the temperature reaches a predefined
minimum.

20

Advantages of Simulated Annealing

• Global Optimization: It can help avoid local optima by allowing the
algorithm to explore suboptimal solutions at higher temperatures.

• Flexibility: The cooling schedule can be adjusted to control the
balance between exploration and exploitation.

• Robustness: It's relatively robust to noise and uncertainty in the
problem formulation.

21

Disadvantages of Simulated Annealing

• Computational Cost: It can be computationally expensive, especially
for large problems.

• Parameter Tuning: The cooling schedule and initial temperature need
to be carefully chosen.

• Sensitivity: The algorithm can be sensitive to the choice of the energy
function.

22

Use of Simulated Annealing

• Complex Problems: When the search space is large, complex, or
multimodal.

• Global Optimization: When finding the global optimum is crucial.

• Noise and Uncertainty: When the problem formulation is noisy or
uncertain.

23

Neural Network

• Neural networks are a type of machine learning algorithm inspired by
the human brain.

• They are composed of interconnected nodes, called neurons, that
process information.

• Each neuron receives inputs, performs calculations on them, and
produces an output.

• The connections between neurons, called synapses, determine the
strength of the signal that passes between them.

24

Neural Network

• Neural networks are trained using a process called backpropagation,
which involves adjusting the weights of the synapses to minimize the
error between the network's output and the desired output.

• Once trained, neural networks can be used to make predictions on
new data.

25

Neural Network

Neural networks are used in a wide variety of applications, including:

• Image and speech recognition

• Natural language processing

• Medical diagnosis

• Financial forecasting

• Game playing

26

ANN

ANN stands for Artificial Neural Network. It's a computational model
inspired by the structure and function of the human brain. Just like
biological neurons, ANNs are composed of interconnected nodes
(artificial neurons) that process information.

27

Components of an ANN

• Input layer: Receives data as input.

• Hidden layers: Process and transform the input data.

• Output layer: Produces the final result based on the processed input.

• Weights and biases: Determine the strength of connections between
neurons, influencing the network's output.

• Activation functions: Introduce non-linearity, allowing ANNs to learn
complex patterns.

28

How ANNs work

1.Input: Data is fed into the input layer.

2.Processing: The input is passed through hidden layers, where it's
processed and transformed using weighted connections and
activation functions.

3.Output: The final result is produced by the output layer.

29

Training: ANNs are trained using algorithms like backpropagation,
which adjust the weights and biases to minimize the difference
between the predicted output and the desired output.

30

Applications of ANNs

• Image and speech recognition: Identifying objects or understanding
spoken language.

• Natural language processing: Machine translation, sentiment
analysis, text generation.

• Medical diagnosis: Analyzing medical images or predicting diseases.

• Financial forecasting: Predicting stock prices or market trends.

• Game playing: Developing AI agents that can play games at a high
level.

31

Types of ANNs

• Feedforward neural networks: Information flows in one direction
from input to output.

• Recurrent neural networks: Can process sequential data by having
feedback connections.

• Convolutional neural networks: Specialized for processing grid-like
data, such as images.

32

Advantages of ANNs

• Learning from data: Can learn complex patterns from large datasets.

• Adaptability: Can adapt to new data and improve performance over
time.

• Parallel processing: Can process information in parallel, making them
efficient.

33

Emergent Systems

Emergent systems are complex systems that arise from interactions
among simpler components. These systems exhibit properties that are
not inherent in their individual parts but rather emerge from the
interactions between them.

34

Characteristics of emergent systems

• Non-linearity: Small changes in initial conditions can lead to
significant differences in outcomes.

• Self-organization: Systems can spontaneously order themselves
without external intervention.

• Feedback loops: Positive and negative feedback mechanisms can
influence the system's behavior.

• Scale-free properties: Properties may not change significantly when
the system's size or scale changes.

35

Examples of emergent systems

• Ant colonies: Individual ants may have simple behaviors, but
collectively, they can create complex structures like nests and exhibit
coordinated foraging.

• Ecosystems: Interactions between plants, animals, and the
environment give rise to complex ecological patterns and processes.

• Brain networks: The interconnectedness of neurons in the brain
allows for complex cognitive functions like learning, memory, and
consciousness.

• Economic markets: The interactions between buyers and sellers can
create emergent phenomena like bubbles and crashes.

36

Studying emergent systems is a complex task that often involves
interdisciplinary approaches from fields like physics, biology, computer
science, and sociology. Understanding emergent systems can provide
insights into a wide range of natural and artificial phenomena.

37

Genetic Algorithms

Genetic Algorithms (GAs) are a class of optimization algorithms
inspired by the process of natural selection in biological evolution. They
are used to find solutions to complex optimization problems, where
traditional methods might struggle.

38

Key components of a genetic algorithm

• Population: A group of individuals (potential solutions) represented
as strings (e.g., binary, real-valued).

• Fitness function: A measure of how well each individual solves the
problem.

• Selection: Individuals with higher fitness are more likely to be
selected for reproduction.

• Crossover: Parents exchange genetic material to create offspring.

• Mutation: Random changes are introduced to the offspring's genetic
material

39

How genetic algorithms work

1.Initialization: A random population of individuals is generated.

2.Evaluation: The fitness of each individual is assessed.

3.Selection: Parents are selected based on their fitness.

4.Crossover: Offspring are created by combining genetic material from
the parents.

5.Mutation: Random mutations are introduced to the offspring.

6.New population: The new generation of individuals replaces the old
one.

7.Repeat: The process is repeated until a satisfactory solution is found
or a termination criterion is met.

40

• Adaptive heuristic search algorithm

• Evolutionary algorithm

• Genetics & Natural Selection

• To generate high quality solution for optimization problem

• Population & Individual

• Operator of GA-
• Encoding
• Selection
• Mutation
• Crossover

41

Applications of genetic algorithms

• Optimization problems: Scheduling, routing, design optimization, etc.

• Machine learning: Feature selection, neural network training, etc.

• Artificial intelligence: Evolutionary computation, artificial life, etc.

42

Advantages of genetic algorithms:

• Global optimization: They can find near-optimal solutions even in
complex landscapes.

• Robustness: They are less sensitive to local optima compared to some
other methods.

• Versatility: They can be applied to a wide range of problems.

43

Disadvantages of genetic algorithms

• Computational cost: They can be computationally expensive for
large-scale problems.

• Randomness: The results can vary due to the random nature of the
process.

• Parameter tuning: The performance can depend on the choice of
parameters (e.g., population size, crossover rate, mutation rate).

44

Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic algorithm inspired by
the foraging behavior of ants. It's a probabilistic technique used to find
optimal solutions to combinatorial optimization problems, such as the
traveling salesman problem or vehicle routing problems.

45

Key concepts in ACO

• Pheromones: A chemical substance secreted by ants to mark their
paths.

• Evaporation: Pheromone trails gradually evaporate over time,
preventing the algorithm from getting stuck in local optima.

• Probability: Ants choose their next move based on a probability
distribution influenced by the pheromone levels and the heuristic
value of the move.

46

How ACO works

1.Initialization: A population of artificial ants is created.

2.Construction: Each ant constructs a solution (e.g., a path) by
iteratively choosing the next move based on the pheromone levels
and heuristic information.

3.Update: After all ants have constructed their solutions, the
pheromone levels on the paths are updated. Pheromone levels on
good paths are increased, while those on poor paths are decreased.

4.Repeat: The process is repeated for a specified number of iterations.

47

Advantages of ACO

• Efficiency: ACO can find good quality solutions efficiently, especially
for large-scale problems.

• Robustness: It is less sensitive to local optima compared to some
other methods.

• Distributed computation: ACO can be easily parallelized, making it
suitable for distributed computing environments.

48

Disadvantages of ACO

• Parameter tuning: The performance can depend on the choice of
parameters (e.g., pheromone evaporation rate, heuristic function).

• Convergence: In some cases, ACO may converge to a suboptimal
solution.

49

Applications of ACO

• Combinatorial optimization: Traveling salesman problem, vehicle
routing problem, quadratic assignment problem, etc.

• Network design: Network routing, network layout, etc.

• Bioinformatics: Protein structure prediction, gene sequencing, etc.

50

	Slide 1: Randomized Search Unit No 3
	Slide 2: Randomized Search
	Slide 3: How Does it Work?
	Slide 4: Advantages of Randomized Search
	Slide 5: Limitations of Randomized Search
	Slide 6: When to Use Randomized Search
	Slide 7: Population-Based Methods in Randomized Search
	Slide 8: Escaping Local Optima
	Slide 9: Strategies to Escape Local Optima
	Slide 10: Strategies to Escape Local Optima
	Slide 11: Strategies to Escape Local Optima
	Slide 12: Strategies to Escape Local Optima
	Slide 13: Strategies to Escape Local Optima
	Slide 14: Iterated Hill Climbing
	Slide 15: How It Works
	Slide 16: Advantages of Iterated Hill Climbing
	Slide 17: Disadvantages of Iterated Hill Climbing
	Slide 18: When to Use Iterated Hill Climbing
	Slide 19: Simulated Annealing
	Slide 20: How It Works
	Slide 21: Advantages of Simulated Annealing
	Slide 22: Disadvantages of Simulated Annealing
	Slide 23: Use of Simulated Annealing
	Slide 24: Neural Network
	Slide 25: Neural Network
	Slide 26: Neural Network
	Slide 27: ANN
	Slide 28: Components of an ANN
	Slide 29: How ANNs work
	Slide 30
	Slide 31: Applications of ANNs
	Slide 32: Types of ANNs
	Slide 33: Advantages of ANNs
	Slide 34: Emergent Systems
	Slide 35: Characteristics of emergent systems
	Slide 36: Examples of emergent systems
	Slide 37
	Slide 38: Genetic Algorithms
	Slide 39: Key components of a genetic algorithm
	Slide 40: How genetic algorithms work
	Slide 41
	Slide 42: Applications of genetic algorithms
	Slide 43: Advantages of genetic algorithms:
	Slide 44: Disadvantages of genetic algorithms
	Slide 45: Ant Colony Optimization
	Slide 46: Key concepts in ACO
	Slide 47: How ACO works
	Slide 48: Advantages of ACO
	Slide 49: Disadvantages of ACO
	Slide 50: Applications of ACO

