
Optimal Path Finding
Unit No 4

Dr. Praveen Barapatre

1

Optimal Pathfinding

Optimal pathfinding is a fundamental problem in artificial intelligence and
computer science, involving finding the shortest or most efficient path
between two points in a given environment.

This technique has applications in various fields, including:

• Game development: For character movement, AI behavior, and level
design.

• Robotics: For robot navigation and obstacle avoidance.

• Logistics and transportation: For optimizing delivery routes and traffic
flow.

• Network routing: For efficient data transmission in computer networks.

2

Algorithms for Optimal Pathfinding

Several algorithms are commonly used for optimal pathfinding:

Dijkstra's Algorithm

• How it works:
• Starts from a source node and explores all neighboring nodes, calculating the

shortest distance to each.
• Iteratively selects the unvisited node with the shortest distance and explores

its neighbors.
• Continues until the destination node is reached.

• Key features:
• Guarantees finding the shortest path to all nodes.
• Well-suited for graphs with positive edge weights.

3

Algorithms for Optimal Pathfinding

A Search Algorithm*

• How it works:
• Combines Dijkstra's algorithm with a heuristic function to prioritize nodes

that are likely to be on the shortest path.

• Uses a priority queue to select the node with the lowest estimated total cost
(f-score).

• Key features:
• Often more efficient than Dijkstra's algorithm, especially in large graphs.

• Requires a well-designed heuristic function to be effective.

4

Algorithms for Optimal Pathfinding

Breadth-First Search (BFS)

• How it works:
• Explores all neighbors of a node before moving to the next level of nodes.

• Guarantees finding the shortest path in terms of the number of edges.

• Key features:
• Simple to implement.

• Can be inefficient in large graphs.

5

Depth-First Search (DFS)

• How it works:
• Explores as deep as possible along a branch before backtracking.

• May not find the shortest path, but can be useful for finding any path.

• Key features:
• Can be efficient in certain scenarios.

• May get stuck in infinite loops if not implemented carefully.

6

Choosing the Right Algorithm

The choice of algorithm depends on the specific problem and its
constraints:

• Dijkstra's Algorithm: Ideal for finding the shortest path in graphs with
positive edge weights.

• A Search Algorithm:* Efficient for large graphs and real-time
applications.

• BFS: Suitable for finding the shortest path in terms of the number of
edges.

• DFS: Useful for exploring all possible paths in a graph.

7

Algorithm Considerations

• Heuristic Functions: A good heuristic function can significantly
improve the performance of A* search.

• Obstacle Avoidance: Techniques like potential field methods and
collision detection can be used to navigate around obstacles.

• Dynamic Environments: Algorithms like D* and Incremental A* can
handle dynamic environments where obstacles or the goal may
change.

• Multi-Agent Pathfinding: Coordinating the paths of multiple agents
to avoid collisions and optimize overall efficiency.

8

Brute Force

Brute force is a straightforward problem-solving technique that
involves systematically trying every possible solution until the correct
one is found. It's often the simplest approach to implement, but it can
be extremely inefficient, especially for large problem spaces.

9

Brute Force Working

How Brute Force Works

1.Generate All Possible Solutions: Create a list of all potential solutions
to the problem.

2.Evaluate Each Solution: Check each solution individually to see if it
satisfies the problem's criteria.

3.Return the First Valid Solution: Once a valid solution is found, the
algorithm can terminate.

10

Example: Password Cracking

Consider the problem of cracking a password. A brute force approach
would involve trying every possible combination of characters,
numbers, and symbols until the correct password is found. While this is
a simple concept, it can take an extremely long time, especially for
complex passwords.

11

Limitations of Brute Force

• Time Complexity: Brute force often has exponential time complexity,
making it impractical for large problem instances.

• Resource Intensive: It can consume significant computational
resources, especially when dealing with large search spaces.

• Inefficiency: It may explore many unnecessary solutions before
finding the correct one.

12

When to Use Brute Force

While brute force is generally not the most efficient approach, it can be
useful in certain scenarios:

• Small Problem Spaces: When the number of possible solutions is
relatively small.

• Simple Problems: For straightforward problems with clear solutions.

• As a Baseline: To compare the performance of other algorithms
against a simple, baseline approach.

13

Improving Brute Force Efficiency

Although brute force is often inefficient, there are techniques to
improve its performance:

• Pruning: Eliminate branches of the search tree that cannot lead to a
solution.

• Parallel Processing: Distribute the workload across multiple
processors or computers.

• Heuristic Optimization: Use heuristics to guide the search towards
promising solutions.

14

Branch and Bound

Branch and Bound is a versatile algorithm used to solve optimization
problems. In the context of optimal pathfinding, it systematically
explores a search space, pruning branches that are guaranteed not to
lead to a better solution.

15

Concept of Branch and Bound

1.State Space Tree: This represents all possible paths from the starting
node to the goal node.

2.Branching: Dividing a problem into smaller subproblems. In
pathfinding, this involves exploring different edges from a node.

3.Bounding: Estimating the cost of reaching the goal from a particular
node. This helps in pruning branches.

4.Pruning: Discarding branches that cannot lead to a better solution
based on the bound.

16

Algorithm Steps

Step 1 Initialization:
1.Create an empty priority queue to store nodes to be

explored.
2.Add the starting node to the queue with its initial cost.

17

Step 2 Exploration:
1.While the queue is not empty:

1.Remove the node with the lowest estimated cost from the
queue.

2.If this node is the goal node, return the path.

3.For each neighbor of the current node:
1.Calculate the estimated cost to reach the goal through this neighbor.

2.If this estimated cost is less than the current best cost, add the
neighbor to the queue with its estimated cost.

18

Step 3 Pruning:
1.If the estimated cost of a node is greater than or equal to

the current best cost, prune the branch.

19

Advantages of Branch and Bound:

• Efficiency: It can significantly reduce the search space by pruning
unnecessary branches.

• Flexibility: It can be applied to various optimization problems,
including pathfinding, scheduling, and resource allocation.

• Guarantees Optimality: It ensures finding the optimal solution, if one
exists.

20

Disadvantages of Branch and Bound:

• Complexity: The algorithm can be complex to implement, especially
for large and complex problems.

• Memory Usage: It may require significant memory to store the state
space tree.

21

Example: 8-Puzzle

• Consider the 8-puzzle problem:
2 8 3
1 6 4
7 0 5

The goal is to move the tiles to reach the following configuration:
1 2 3
8 0 4
7 6 5

We can use Branch and Bound to find the optimal solution by exploring
different possible moves and pruning branches that lead to suboptimal
solutions.

22

Refinement Search

Refinement search in optimal pathfinding is a technique that uses a
hierarchical approach to find optimal paths in large and complex
environments. It involves breaking down the search space into multiple
levels of abstraction, starting from a high-level overview and gradually
refining the search to a more detailed level.

23

How it works

1. High-Level Search:
1.The search starts at the highest level of abstraction, where the

environment is represented as a simplified graph with fewer
nodes and edges.

2.A pathfinding algorithm like A* is used to find a rough path
between the start and goal nodes at this high level.

3.This high-level path provides a general direction for the search.

24

How it works

2. Refinement:
1.The high-level path is then refined by focusing on specific sections

of the path at lower levels of abstraction.

2.Each lower level represents a more detailed representation of the
environment, with more nodes and edges.

3.The pathfinding algorithm is applied again at each lower level to
refine the path, taking into account more detailed information
about the environment.

25

Benefits

• Efficiency: By focusing the search on promising areas identified by the
high-level path, refinement search can significantly reduce the search
space and improve efficiency.

• Scalability: It can handle large and complex environments by breaking
them down into smaller, more manageable subproblems.

• Flexibility: It can be adapted to different types of environments and
pathfinding algorithms.

26

Challenges

• Sub-optimality: While refinement search can find good paths, it may
not always find the optimal path due to the inherent limitations of
the hierarchical approach.

• Complexity: Implementing refinement search can be complex,
especially for environments with multiple levels of abstraction and
different pathfinding algorithms at each level.

27

Dijkstra Algorithm

• Dijkstra's algorithm is a popular algorithm for finding the shortest path
between nodes in a weighted graph.

• It's a greedy algorithm that works by iteratively selecting the unvisited
node with the smallest distance from the source node and marking it as
visited.

• This process continues until all nodes have been visited or the destination
node is reached.

Time Complexity:

• O(E log V) using a priority queue, where E is the number of edges and V is
the number of vertices.

28

Key Concepts

• Weighted Graph: A graph where edges have associated weights or
costs.

• Source Node: The starting point from which the shortest paths are
calculated.

• Distance Array: An array to store the current shortest distance from
the source node to each node.

• Visited Set: A set to keep track of nodes that have been processed.

29

Algorithm Steps

1.Initialization:
1. Set the distance to the source node as 0 and to all other nodes as infinity.

2. Mark all nodes as unvisited.

2.Selection:
1. Select the unvisited node with the smallest distance value.

3.Relaxation:
1. For each neighbor of the selected node:

1. Calculate the tentative distance from the source node through the selected node.

2. If the tentative distance is smaller than the current distance to the neighbor, update the
distance value of the neighbor.

30

Algorithm Steps

4. Marking:
1. Mark the selected node as visited.

5. Repeat:
1. Repeat steps 2-4 until all nodes have been visited or the destination node is

reached.

31

Applications

• Network Routing: Finding the shortest path between two nodes in a
network.

• Geographic Information Systems (GIS): Calculating shortest routes
between locations.

• Game AI: Pathfinding for non-player characters (NPCs).

• Transportation Networks: Optimizing routes for delivery vehicles or
public transportation.

32

A (A-star) Algorithm*

A* is a popular and efficient graph traversal and pathfinding algorithm
used in various fields of computer science, including artificial
intelligence and game development. It's particularly useful for finding
the shortest path between a starting node and a goal node in a
weighted graph.

33

Concepts of A* Search

• Informed Search: A* is an informed search algorithm, meaning it
leverages a heuristic function to guide its search efficiently.

• Heuristic Function (h(n)): This function estimates the cost of the
cheapest path from a node n to the goal node. A good heuristic can
significantly improve the performance of A*.

• Cost Function (g(n)): This function represents the cost of the path
from the start node to node n.

• Evaluation Function (f(n)): This function combines the cost function
and the heuristic function to estimate the total cost of the path
through node n to the goal node: f(n) = g(n) + h(n).

34

Algorithm Steps

1.Initialization:
1.Create an open set and a closed set to keep track of

nodes.
2.Set the start node's g(n) to 0 and its f(n) to h(n).
3.Add the start node to the open set.

35

2. Loop:
1.While the open set is not empty:

1.Find the node in the open set with the lowest f(n) value.
2.Remove that node from the open set and add it to the closed

set.
3.If the current node is the goal node, reconstruct the path from

the start node to the goal node by following the parent
pointers and return the path.

4.For each neighbor of the current node:
1.If the neighbor is in the closed set, ignore it.
2.Calculate the tentative g-score for this neighbor: g(neighbor) =

g(current) + distance(current, neighbor).
3.If the neighbor is not in the open set or the tentative g-score is lower

than the current g-score, update the neighbor's g-score and f-score,
set its parent to the current node, and add it to the open set.

36

Applications

• Game AI: Pathfinding for non-player characters (NPCs).

• Robotics: Motion planning for robots.

• Geographic Information Systems (GIS): Route planning.

• Video Games: Level design and AI.

37

Advantages of A:*

• Efficiency: A* often finds the optimal path more quickly than other
algorithms like Dijkstra's algorithm.

• Completeness: If a solution exists, A* will find it.

• Optimality: If the heuristic function is admissible (never
overestimates the true cost to the goal), A* is guaranteed to find the
optimal solution.

38

	Slide 1: Optimal Path Finding Unit No 4
	Slide 2: Optimal Pathfinding
	Slide 3: Algorithms for Optimal Pathfinding
	Slide 4: Algorithms for Optimal Pathfinding
	Slide 5: Algorithms for Optimal Pathfinding
	Slide 6: Depth-First Search (DFS)
	Slide 7: Choosing the Right Algorithm
	Slide 8: Algorithm Considerations
	Slide 9: Brute Force
	Slide 10: Brute Force Working
	Slide 11: Example: Password Cracking
	Slide 12: Limitations of Brute Force
	Slide 13: When to Use Brute Force
	Slide 14: Improving Brute Force Efficiency
	Slide 15: Branch and Bound
	Slide 16: Concept of Branch and Bound
	Slide 17: Algorithm Steps
	Slide 18
	Slide 19
	Slide 20: Advantages of Branch and Bound:
	Slide 21: Disadvantages of Branch and Bound:
	Slide 22: Example: 8-Puzzle
	Slide 23: Refinement Search
	Slide 24: How it works
	Slide 25: How it works
	Slide 26: Benefits
	Slide 27: Challenges
	Slide 28: Dijkstra Algorithm
	Slide 29: Key Concepts
	Slide 30: Algorithm Steps
	Slide 31: Algorithm Steps
	Slide 32: Applications
	Slide 33: A (A-star) Algorithm*
	Slide 34: Concepts of A* Search
	Slide 35: Algorithm Steps
	Slide 36
	Slide 37: Applications
	Slide 38: Advantages of A:*

