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Freeman-Tukey transformation

• The Freeman-Tukey transformation is a data transformation 
technique used to normalize proportions for statistical 
analysis. 

• It is particularly useful when working with proportions that 
come from small samples or when the proportions are close 
to 0 or 1. 

• The transformation makes the data more closely follow a 
normal distribution, which allows for the use of standard 
statistical tests.



Two main applications of the Freeman-Tukey 
transformation

Transforming proportions:

• If X is a binomial variable with parameters n 
(number of trials) and p (probability of success), 
then the transformed variable Y, given in radians 
by the following formula, has an approximate 
normal distribution with mean sin^-1(√p) and 
variance 1/(4n + 2).



Graph of double arcsine transformation for 
different sample sizes; sin−1( √ p) is the limiting 
function as n→∞.

The approximation 
improves as np 
(number of successes) 
increases and should 
not be used if np < 1.



Two main applications of the Freeman-Tukey 
transformation

Transforming Poisson variables:

If X is a Poisson variable with expectation μ 
(average number of events), then, for μ>1, the 
transformed variable Z, given by the following 
formula, has an approximate standard normal 
distribution. Observed values of Z are referred to 
as Freeman-Tukey deviates.



FreemanTukey transformation formula for 
Poisson variables



• By applying the Freeman-Tukey transformation, you can achieve 
normality of the data, which is a requirement for many statistical 
tests. This allows you to perform reliable statistical analysis on 
proportions and Poisson variables, even when the data comes from 
small samples or has extreme values.



Square Root and Arcsine

• The square root and arcsine (inverse sine) functions are both 
mathematical operations, but they play a specific role in the Freeman-
Tukey transformation.



Square Root

• In the Freeman-Tukey transformation for proportions, 
the square root is taken first. This helps to compress 
the range of values, particularly for proportions close 
to 0 or 1. Since the square root of a small number is 
also small, it reduces the influence of extreme values 
on the transformation.



Arcsine

• After taking the square root, the arcsine function is applied. 
The arcsine function takes an input between -1 and 1 and 
returns the angle in radians whose sine is that value. This 
step converts the compressed values from the square root 
operation into a range suitable for a normal distribution.



Combined Effect

By combining the square root and arcsine, the Freeman-Tukey 
transformation achieves two things:

1.Reduces the influence of extreme values: The square root 
helps compress the range, making proportions closer to 0 or 
1 less impactful on the overall distribution.

2.Transforms the data towards normality: The arcsine 
function converts the compressed values into a form that 
more closely resembles a normal distribution.



Log and Exponential transforms

• Log and exponential transforms are another set of powerful tools 
used in data analysis, distinct from the Freeman-Tukey 
transformation.



Logarithmic Transformations

• Purpose: Logarithms are used to compress data that exhibits 
exponential growth or to address skewed distributions. They work by 
taking a value (x) and converting it to its exponent in relation to a 
base (a), written as log_a(x). The most common base used in statistics 
is the natural base (e), resulting in the natural logarithm (ln(x)).



Applications: 

• Compressing skewed data: When dealing with data that grows 
exponentially or has a right skew (concentrated on the left side), 
logarithms can compress the larger values, making the distribution 
more symmetrical.

• Analyzing ratios and changes: Logarithms are helpful for analyzing 
ratios and percentage changes. For example, comparing the log 
income of different groups can reveal trends in income inequality.



Exponential Transformations

• Purpose: Exponential transformations reverse the effect of logarithms 
and are used to model exponential growth or decay. They raise a base 
(a) to the power of another value (x), written as a^x.



• Applications: Modeling exponential growth: Exponential functions 
are ideal for modeling phenomena with rapid growth, such as 
population increase, bacterial growth, or radioactive decay.

• Creating interaction terms: In regression analysis, exponential terms 
can be used to capture interactions between variables where the 
effect of one variable on another is not constant.



Choosing the Right Transform

The choice between using a log or an exponential transform depends 
on the characteristics of your data and the analysis you want to 
perform.

• Use logarithms if your data exhibits exponential growth or has a right 
skew.  

• Use exponentials if you want to model exponential relationships or 
create interaction terms in regression analysis.



In Relation to Freeman-Tukey

• The Freeman-Tukey transformation is specifically designed for 
normalizing proportions, while log and exponential transforms 
address broader data issues like skewness and exponential 
relationships. They can be complementary tools:

• You might use the Freeman-Tukey transformation on proportions 
before applying a log transform to further address skewness.

• Conversely, you could use a log transform on a variable before 
incorporating it into a model where you suspect an exponential 
relationship.



Logit transforms

• The logit transformation occupies a unique space compared to the 
previously discussed transformations (Freeman-Tukey, log, and 
exponential).

• Purpose: The logit transform, also known as the logistic 
transformation, is primarily used to convert binary data (0 or 1) or 
proportions (between 0 and 1) into a continuous value between 
negative infinity and positive infinity.

• Formula: The logit of a proportion (p) is calculated using the natural 
logarithm (ln) of the odds: ln(p / (1 - p)).



• Applications: 

• Logistic Regression: The logit transformation is the foundation for 
logistic regression, a statistical method used to model the relationship 
between a binary dependent variable (e.g., success/failure, 
alive/dead) and one or more independent variables. The transformed 
values (logits) allow logistic regression to estimate the probability of 
an event occurring based on the independent variables.

• Visualizing Binary Data: Logit transformed data can be plotted on a 
continuous scale, making it easier to visualize the relationship 
between the independent variable and the probability of the event.



Differences from Other Transforms

• Focus on Binary Data: Unlike log and exponential transforms that 
address a wider range of data characteristics, the logit focuses 
specifically on transforming binary data or proportions.

• Normalization for Logistic Regression: The logit transformation 
doesn't necessarily create a normal distribution, but it transforms the 
data into a scale suitable for logistic regression analysis.

• Odds and Probability: The logit transformation works with the 
concept of odds (p / (1 - p)) instead of directly manipulating the data 
values themselves.



Relationship with Other Transforms

• Complementary to Log Transformation: In some cases, the logit 
transformation can be seen as an alternative to the log transform for 
proportions, especially when the focus is on modeling the probability 
of an event using logistic regression.

• Not Directly Related to Freeman-Tukey: The Freeman-Tukey 
transformation aims for general normality of proportions, while the 
logit serves a specific purpose in logistic regression. However, both 
can be used on proportions depending on the analysis goals.



Normal transformation

• The standard normal transformation, also known as the z-score 
transformation, is a specific technique used to convert data from any 
distribution into a standard normal distribution. A standard normal 
distribution has a mean of 0 and a standard deviation of 1. This 
transformation allows you to compare data points from originally 
different distributions using a common scale.



Formula: 

• The transformation is achieved using the following formula:

• z = (x - μ) / σ

Where:

• * z is the transformed value (z-score)

• * x is the original data value

• * μ is the mean of the original data distribution

• * σ is the standard deviation of the original data distribution



• Effect: This formula subtracts the mean (μ) from each data point (x) 
and then divides by the standard deviation (σ). This process 
effectively centers the data around 0 and scales it to have a standard 
deviation of 1.



Benefits of Standard Normal Transformation

• Standardization: By transforming data into a standard normal 
distribution, you can compare values from originally different 
distributions on a common scale (z-scores). This allows you to assess 
the relative position of a data point within its original distribution.

• Statistical Tests: Many statistical tests rely on the assumption of 
normality. The standard normal transformation can be a helpful step 
before applying these tests to non-normal data. By transforming the 
data to a normal distribution, you can ensure the validity of the test 
results.
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